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Abstract

This report presents a suboptimal boundary estimation algorithm

for noisy images which is based upon an optimal maximum likelihood problem

formulation. Both the maximum likelihood formulation and the resulting

algorithm are described in detail, and computational results are given.

In addition, the potential power of the likelihood formulation is demon-

strated through the presentation of three simple but insightful analyses

of algorithm performance.
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IMPLEMENTATION, INTERPRETATION AND ANALYSIS OF A

SUBOPTIMAL BOUNDARY FINDING ALGORITHM

I. Introduction

In this paper we present an algorithm for estimating object boundaries

in noisy black and white images. The algorithm is based upon a maximum

likelihood Markov process state estimation formulation developed by Cooper

[11, [2]. The images treated consist of a constant grey level object

surrounded by a constant grey level background. The entire picture is

assumed corrupted by an additive white Gaussian noise field. The algorithm,

which sequentially maximizes a suboptimal likelihood function to obtain a

boundary estimate consisting of a sequence of pixel edge elements, serves

to illustrate the tradeoffs between computational feasibility and theoreti-

cal optimality. As is demonstrated, the likelihood formulation also pro-

vides a framework for analysis of algorithm performance and for comparison

with other algorithms.

Our algorithm was originally motivated by a similar heuristic tree

searching algorithm introduced by Martelli [3]. This algorithm estimates

boundaries by minimizing a cost function containing gradient and curvature

components. It will be shown that this algorithm which is not based upon

any optimal problem formulation has potentially poorer performance charac-

teristics. Actually, our approach is more analogous to estimation pro-

cedures used in control, communication and information theoretic applications

In particular, we develop a Markovian boundary generation model, and view

boundary estimation as a problem of estimating the state of this model from

noise corrupted measurements.

As discussed by Forney [41, classical problems such as convolutional

coding, frequency shift keying, and text recognition can be formulated
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in the Markov state estimation framework. Scharf and Elliott [5] have also

discussed a number of problems in signal and image processing which can

be solved using such techniques. A common feature of these algorithms is

the formulation of a likelihood function which can be recursively defined

and hence sequentially maximized. Furthermore maximization of this likeli-

hood leads to a maximum a posteriori probability (MAP) estimate of the

state sequence. In many cases elegant dynamic programming (sometimes re-

ferred to as the Viterbi algorithm in the information theory literature)

algorithms exist for the sequential maximization. In other cases where the

state space is large other graph searching algorithms are necessary. As

we show below, although it is a simple matter to derive a likelihood func-

tion for MAP boundary estimation, it is not possible to calculate this

likelihood recursively. The reason for this is the MAP formulation re-

quires use of all the picture data. When object boundaries are estimated

sequentially one cannot classify all picture based upon a partial boundary.

As a consequence we derive a suboptimal recursive likelihood function. It

is based upon the optimal, but it makes use of only picture data in a swath

about the boundary. Furthermore due to the size of the state space we are

forced to use a suboptimum modified A* (or branch and bound) graph search

algorithm to perform the maximization [6]. The algorithm that results is

very robust to signal to noise ratios of 2, and although it is more sensi-

tive to model parameter choice it performs well to signal to noise ratios

of 1.

A recent paper by Nahi and Lopez-Mora [7] discusses an alternative

and very effective probabilistic formulation for sequential boundary

estimation. In this approach the likelihood of the picture data is maxi-

mized on an individual row by row basis. Since no attempt is made to
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maximize the joint data likelihood for all of the rows it is also subop-

timal. Nor on the surface does it appear that there is an easy way to

modify the approach in order to make optimum use of the data. Other

potential drawbacks of this approach are that it does not constrain

boundary estimates to be continuous and hence it produces jagged boundar-

ies, and its one dimensional nature limits the class of objects to which

it is applicable.

The paper is organized as follows. In Section II we present a general

maximum likelihood formulation for optimal boundary estimation. With this

formulation as a guide, in Section III we present a suboptimal but compu-

tationally tractable algorithm for actual boundary estimation. Two

alternative Markovian boundary generation models are presented for incor-

poration into the algorithm. Section IV demonstrates the value of the

likelihood formulation for investigating algorithm performance. The

suboptimal algorithm is compared with both the Martelli algorithm and

the optimal algorithm derived in Section II. We also discuss algorithm

performance in the presence of artifacts which are inconsistent with the

boundary model. Examples of algorithm performance are given in Section V

and some additional comments and concluding remarks are made in Section VI.



II. A Maximum Likelihood Formulation for

Boundary Estimation

In this section we present the theoretical framework on which our

suboptimal algorithm is based. In particular we formulate the boundary

estimation problem in terms of maximizing the joint log likelihood of an

hypothesized object boundary and all of the picture data where the like-

lihood is derived by making use of a probabilistic data generation model.

To begin, a digitalized image will be represented by a picture

function g whose value corresponds to the grey level of pixel (i,j). We

model the picture function g i as consisting of two components--a true

picture component bij , and a noise component nij , so that gij = bij_ + nij

The picture is assumed to contain a single object of grey level rin lying

in a background of grey level rout where ri - rout f A > 0. For conveni-

ence we assume an appropriate constant has been subtracted from the original

picture rn 2 otfunction so that rn= and r - hrfr nlyae

on the values - and - - depending upon whether pixel (i,j) lies inside or
2 2

outside the object. The noise terms n are assumed to be independent,

identically distributed (i.i.d.) Gaussian random variables with zero mean

2
and known variance, a .

If an edge element is defined as the line segment separating two

adjacent pixels, then an object boundary will consist of a closed directed

sequence of edge elenents which does not intersect itself, and will be

denoted as {t1 N1 We make the convention that a boundary {t }N is gener-

ated by moving in the clockwise direction around an object. As depicted

in Figures la and lb, each directed boundary edge element tk, 1 < k < N,

can be uniquely described by a threetuple (i,j,d) where i and j correspond

to the coordinates of an adjacent pixel, and d to one of the four possible
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edge directions. We can then view the unknown edge sequence {t as a

discretely indexed vector valued stochastic process with discrete range

space. We model this as a Markov process of order K with states

* x = {t 1i+K
-l and known transition probabilities PB(xiIxi). Appropri-

:1 B jii

ate choices for PB( -) are given in the section to follow.

Let us next derive an expression for the joint likelihood L of an

hypothesized boundary edge sequence and the entire picture function. The

joint likelihood L is the product of the likelihood LB of the hypothesized

SI boundary edge sequence, and the likelihood LPIB of the picture function

conditioned on the hypothesized boundary. Hence

ZnL - ZnLB + £nLPIB ()

Using the Markov chain model we obtain

N
£nLB inPrs (x1 ) + E £nPB(xilxi I ) + tnPL(N) (2)

i=2

where Ps(xl) is the a priori probability of a starting state xI and PL(N)

is the a priori probability of a boundary being of length N. Given a

specific boundary edge sequence each pixel corresponds to either object

or background. The Gaussian noise model then implies that

IZ(Jj A 2 1 A

1n L2 C ij A2 (3)nLp B f C1 - 2(gJ -2) -2 -(g 9 2)
2a 2  22

pixel (i,j) pixel (i,j)
in object in

background

where C is a constant independent of the choice of an hypothesized

boundary. Substituting (2) and (3) into (1) yields the following expres-

sion for the joint log likelihood
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N
RnL = InPs(xI) + E tpnPB(xilxil) + ZnPL(N) + Cli=2

(4)

(g A2 1 (g A2
2ij 2 -S2a 2 in 22 in

object background

Note that (4) simplifies to

N
L1 £nL = ZnPs(XI) + E ZnPB(Xilxil) + ZnPL(N) + C2

(5)
+ Z (A/2a)(gij/o) - Z (A12a)(gijl/)

in in
object background

where C2 is independent of the choice of an hypothesized boundary.

Hence, although (4) appears to be quadratic in the picture function

when all the picture data is used, only the linear correlation

terms effect any maximization.

An optimal boundary estimation algorithm would maximize (5) over

all possible boundary edge sequences. This would produce a maximum

a posteriori probability (MAP) estimate of the state sequence {x.) and

hence the boundary edge sequence ft }. However, since (5) makes use of

all the picture data, it is computationally impractical to maximize it.

Furthermore, since computation of the two summations involving the

picture function gij requires knowledge of the complete hypothesized

boundary, (5) cannot be sequentially maximized. In view of these prob-

. lens a suboptimal boundary estimation algorithm is presented in the

following section.
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III. A Suboptimal Boundary Estimation Algorithm

In this section we present a suboptimal boundary estimation algorithm

which is based upon maximizing a likelihood function similar to (5), but

one which can be maximized using sequential procedures such as the A*

(branch and bound) algorithm [6]. The basic approach involves limiting

the use of picture function data to a small region about an hypothesized

boundary.

As pointed out by Martelli [3], sequential boundary estimation can

be viewed as finding a path through a directed graph. For our formulation

each node of the graph corresponds to a K-dimensional Markov state defined

by the boundary generation model introduced in the previous section. A

likelihood value is assigned to each node, and it corresponds to the maxi-

mum of the likelihoods for all paths leading to that node from a pre-

determined start node. As shown in Fig. 2, each node has exactly three

successor nodes corresponding to the three states which can be obtained

by adding a new edge element to an hypothesized boundary edge sequence.

By defining a goal node to be a boundary state lying within a

neighborhood of the start node, as depicted in Fig. 3, graph theoretic

search procedures such as the A* algorithm can be applied to obtain a

maximum likelihood path from the start node to a goal node. The states

along such a path would then define the boundary estimate. These algo-

rithms generate only the portions of the graph needed to continue the

search. For example, the basic step in the procedure involves searching

the present graph for the node with the largest likelihood, adding to

the graph any of its three successors not already on the graph, and

recalculating the likelihood of any of the successor nodes which are

already on the graph. As a result, it is computationally desirable to
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recursively calculate the likelihood of a successor state from knowledge

of the likelihood of its predecessor. In view of this, if xi is an

3arbitrary graph node and x +l, j = 1,2,3 are its three successor states

as depicted in Fig. 2, then the following suboptimal log likelihood

function can be formulated based upon the optimal likelihood (5),

ZnL(x ) = £nL(x) + ZnP (Xl Ix) + D(x+) j=1,2,3 (6)B i+llx 1+1

D(x +l) is the change in picture data likelihood caused by adding

xi+l to the boundary sequence defined by the most likely path from

3 Pxj xthe start node to node xi+l, and PB(x +l Xi) is the state transition

probability defined in the previous section. Methods for calculating

these two quantities are discussed in detail below.

Calculating Picture Function Contribution D(x+

Picture data is incorporated into (6) by using pixels contained in

a swath about an hypothesized edge sequence. Figure 4 gives examples

of data swaths for alternative boundary edge sequences. This use of

picture data is suboptimal since for the situations depicted in Figure 4,

the log likelihoods of the two alternative paths would be evaluated using

different picture data. As will be discussed in more detail in the

section to follow, optimal use of the data would require comparison of

these two alternative boundary paths using likelihoods which incorporated

the same picture data. Our data usage is globally suboptimum, but it is

locally optimum. The global suboptimality is pertinent to the relative

frequency with which the sequential estimator leaves the vicinity of the

true path and must backtrack. The local optimality is pertinent to the

relative frequency with which the estimate will be in error by a small

number of pixels, e.g., one or two pixels. Since the latter accuracy

consideration may be very important in some applications we discuss it
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further below.

D(x ) is calculated by making use of picture data contained in
i+1

a (4x4) pixel block surrounding the last edge of the boundary edge

sequence leading to node x. The purpose of this (4x4) template is to

optimally use data in the region of the deepest edge element of a path

in order to choose among the following three edge elements and to extend

the path in an optimal way. This has the advantage of permitting optimal

detection for short but arbitrarily curvy boundary subsequences whereas

Hueckle type operators [9], for example, are restricted to straight lines.

As shown in Fig. 5, 15 possible extension edge sequences out of the

(4x4) block are considered, 5 for each of the successor states x+i+11

j=1,2,3. Assuming a boundary edge sequence to be generated by moving

in the clockwise direction about an objcct, the original sequence and

any of the 15 extension paths uniquely classify each of the 16 pixels

in the block as to being either inside or outside the object. Based

upon (4) and (5) we have experimented with and anlyzed two alternative

approaches for assigning likelihoods to each classified pixel. In view

of (4) a natural, and our first choice involved assigning the quadratic

values

- 1 zn(21ra 2) - - 1 2(g - -) (7a)
2 2c ij 2

or

-1 n(2 2) 1- -(gij + A (7b)
~-n2w - 2 2'

20-

depending upon whether pixel (i,j) was classified as in object or back-

ground respectively. However, as we discuss in the Section IV to follow,

improved algorithm performance is obtained by assigning values more

analogous to the linear data terms in (5). In particular we assign the
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values
-(A/2o)2 + (A/2o)(gij/(r (8a)

or

2-(A/2)- (A/2) (g. /Cr) (8b)

depending upon whether pixel (i,j) is classified as in object or back-

ground respectively.

For each node xJ  five values Dk (x ) k=l,2,... ,5 are calculated;i+l ki+l"' '

one for each of the five extension paths. Observe that these calculations

can be performed in a computationally efficient manner. it should be

apparent from Figure 5 that for fixed j, each (4x4) template, k, can be

obtained from template, k=l, by reclassifying a single pixel. Hence
Dk (i+) can be obtained from D (x ) by adding an appropriate constant.

k(1+ k-l i+l

If any extension path causes a loop with the optimal edge sequence leading

to state x. then the corresponding Dk(J+) is assigned a value of --. It
1~ ki+l

should also be noted that some of the data in the (4x4) template was used

in calculating L(x.). Hence only additions and changes are incorporated

into D (xj ). This implies that the complete data swath for a boundary
k i+l

edge sequence consists of the union of a sequence of these (4x4) blocks.

Finally we define

D(x+ max D(.i (9)i+l l<k<5 k(.+l

Though the required computation in calculating the 15 values of

Dk(x + I ) is seemingly large, it is in fact modest since, as pointed out

above, these values can be calculated recursively. We consider this

algorithm to be a very important part of this approach since the large

number of template matchings required might otherwise be prohibitive.
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Calculating Boundary Contribution ZnPB(x i+lx i)

We have experimented with two methods for calculating the Markovian

transition probabilities PB(X +lIxi). To make some initial comparisons

with results previously presented in the literature, we first chose

PB(XJ+lj) so that ZnP J Ix roughly resembled the Martelli curva-

ture cost [3]. We have also developed a method for calculating transition

probabilities based upon a dynamic boundary generation model and imple-

mentation of a Kalman filter.

The Martelli curvature constraint [3) was based upon the assumption

that the boundaries of interest were locally smooth and of low curvature.

Under these assumptions we can define our state dimension K=8, and
f(O.)

PB (Xi+ x) = Ae (10:,)

3 f(6.)
A = E e (lOb)

j=l

f(0j) = -a0j.I - b02 (lOc)

where a>O, b>O, are arbitrary constants, and 0. is the angle depicted
J 3

in Figure 2. A is a normalization factor which assures that T PB(X +iIxi)=l.

Since ZnPB(X i+lIxi) ZnA + f(0.) has a maximum for 0.=0 these transition
i J j

probabilities favor straight boundaries and discourage sharp directional

changes.

In implementing this scheme we observed that for coursely quantized

images 0. varies considerably along constant curvature paths such as

circular arcs. Hence to reduce the variability in our measurement of

we have developed a look-up table procedure for determining directions

of line segments passing through sequences of four edges such as shown

in Figure 2. The directions of the line segments for the first four

edges and for the second four edges are then compared to determine t, .I
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The Kalman filtering approach requires additional 2 pr'iori informa-

tion about boundary shape. It is well known that discrete "time" linear

dynamic systems driven by sequences of i.i.d. random variables represent

Markov processes. These systems can provide good models for many types

of smooth object boundaries. Here we will assume that the boundaries of

interest look like perturbed or distorted ellipses. This model is valid

for a number of different human organ boundaries in CAT scans, or con-

4 1ventional tomographs, and also the cloud shown in Figure lOe.

Using a Euclidean coordinate system, let a sequence of points on

the true object boundary be denoted by the vectors v(k) (2xl), l<k<M.

Having restricted the image boundary to consist of a sequence pixel edges

ti, l<i<N, points lying on these edges represent quantized versions of

the points v(k), and will be denoted as v (k), l<k<M. Since elliptical
q

trajectories can be generated as solutions to second order systems, an

appropriate model for distorted ellipses would be

v(k+l) = Av(k) + b + uk (11)

v (k) = v(k) + wk , (12)q

where A (2x2) and b (2xl) are constant matrices, and uand wk(2Xl)

are sequences of zero mean, i.i.d., Gaussian random vectors with

covariance matrices o 21 and a 21 respectively. The process uk can be
u w

viewed as the distortion mechanism while the process wk approximates

the quantization error. We also assume uk and wk to be uncorrelated.

For an ellipse consisting of M points, having a ratio of major to minor

axis of p, a rotation angle of 0, and a center at c(2xl), appropriate

choices for A and b would be
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Y+ 6(-)sin0cosU '( I'Cos2 O+psin 2)

-6(pcos O+ in 0) y-6 2 )sincos0

b = [I-AIc

27T

Fg2 2
tFrom knowledge of A, b, and cw one can construct the well known

steady state Kalman filter (or predictor) for generating an estimate

v(k) of v(k):

v(k+l) = Av(k) + b G[v q(k) - v(k)] (13)

G = AP[c2 I+P]-i 
(14)

P = APAT + a21 + AP[ -I+p]-IPAT (15)
U w

To see how this filter can be used for generating the transition

probabilities PB(xI+lxi) consider Figure 6. Figure 6 shows three

possibilities v (k), v (k), and v 3(k) for the point v (k). These
q q q q

correspond to the end points of the three alternatives, 
ti+l, ti+, ti+,

for edge element ti+1 given t... The estimate (k) of v(k) is also shown.

Having assumed uk and wk to be Gaussian, one can show that if v (k) were

unconstrained then it would be Gaussian, and conditioned on v (k-1) it

would have mean v(k) and covariance P + a
21. However, since v (k) is
w q

constrained to lie on a pixel edge we can discretize the Gaussian density

function to obtain approximate transition probabilities.

Let the Markov process state x. be the single edge element t.,1 1

then

P (xJ jxi) - P(v3(k+l)lv (k))
B i+l i q q

= v(k2 32~),v(Ool+P)/ F. P (v1 (k) ,(k),a I+P) , (16)
j G q w
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* where

P-(xmY) i 1 T -IPG(Xm ) (2irIXIJ) exp(- (x-m) >: (x-m)) (17)

In implementing this scheme, since the dynamic system does not

generate equidistant point, we have found it helpful to choose M=3N so

that on the average we generate 3 estimates per pixel. To obtain the

value v(k) used in (17) the predictor is run sequentially from v(k-l)

until a pixel boundary is crossed.

Graph Searching

The state likelihoods calculated by (6) are used in conjunction

with a modified A* algorlthm to find the boundary estimate. First

since our (4x4) data template was developed under the hypothesis that

the boundary passed through the template, before we expand a state, i.e.

add its successor states to the graph we test this hypothesis. In

particular, if the probability that the (4x4) template (centered about

the last edge element of the state to be expanded) is completely inside

the object or background is above a fixed threshold then this state is

not expanded. Second, to make the algorithm computationally feasible in

terms of both computer memory and execution time requirements it is

necessary to periodically prune the graph of nodes which had little

probability of being on a boundary. If addition of a set of successor

states x+ 1 , j=1,2,3 increased the maximum depth of the graph, 
then all

graph branches a distance (T+I) or more back from the states xii+l

are pruned from the graph provided they do not lie on the most likely

path from the starting state to states xi+ I -

In Section V to follow we present some examples to illustrate the

algorithms performance.



IV. Interpretation and Analysis

In this section we show how the mathematical framework introduced

in Section II can be used to do some simple but insightful analyses of

the boundary estimation algorithm outlined in Section III. The first

analysis compares the operation of this algorithm with that of the
.' I

Martelli algorithm, while the second examines the effects of the algo-

rithms restricted use of picture function data and shows that performance

will not be significantly impaired. Finally, the third analysis shows

how it is possible to predict algorithm performance when certain unexpected

artifacts are encountered.

Comparison with Martelli Algorithm

If the first method for calculating transition probabilities, using

local curvature information, is incorporated into the algorithm, the

essential difference between it and the Martelli algorithm is the method

in which picture function data is employed for estimation. The Martelli

algorithm searches a directed graph for a minimum cost path where one

component of the nodal cost function is a directional derivative calcu-

lated from local picture function data. This is somewhat analogous to

the picture function component of (6) obtained by classifying data in

the (4x4) template. In this subsection we compare the performance of the

two algorithms by looking at pairs of edge sequences (paths). One path

is assumed to lie on the true boundary while the other is assumed to lie

in the object or background. We then calculate an error probability for

each algorithm,that is the probability that the path lying in the object

or background is more likely or of least cost. We first consider the

case of a single erroneous edge and show that our new algorithm has a

lower probability of initially lcaving a correct path. The implication
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of this is that fewer nodes will be added to the graph. We next look

at longer paths where one path is straight and the other curvy. Here

it is shown that our algorithm performs better when the true boundary is

curvy while Martelli's algorithm performs better when the true boundary

is straight. In fact, in the latter case, the Martelli algorithm per-

forms better than the optimal algorithm which maximizes (5). This can

be explained, however, by realizing that the optimal formulation assumes

no a priori information about boundary curvature while the Martelli

algorithm is designed to favor straight paths.

First consider the patch of picture in Figure 7. It shows a correct

edge sequence (lying on the object boundary), {t11J, along with an erron-

eous edge ti. Let us calculate the probability of each algorithm expand-

ing (generating successor states to) the incorrect state x'={...,tl,t 2

t3} rather than the correct state x={.. .,t, t 2 , t 31. Assuming the decision

is based solely on use of picture function data, Martelli's algorithm

would decide x' rather than x if the data cost c(x') were less than the

cost c(x). The cost function used by Martelli approximates the direc-

tional derivative across an edge and makes use of 4 pixels in the row

(or column) containing the edge (2 on each side). In addition, the

constant 2A is added to insure that the cost is zero if calculated across

a true boundary in the noise free -3se. Using this function we obtain

c(x') = 2A + g21.+ g22 - g2 3 - g24

c(x) = 2A + g13 + g2 3 - g3 3 - g4 3

Therefore

P(deciding x'ix correct)

= P(c(x)-c(x') > O~x correct)

, P(2g 23 + g13 + 924 - g21 - g2 2 - g3 3 - g4 3  Ox correct

P(G > OIx correct)
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Conditioned on x being correct, G is a normally distributed random

variable with mean -A and variance lOu 2 , i.e., GN(-A,10o 2). This implies

that

P(G>Ox correct) = f (2n)-1 exp(-s 2 /2)ds (18)
lA

Using our algorithm calculation of the data likelihood for both x

4. and x' involves classifying the same 16 pixels shown in Figure 7. The

only difference between the two likelihoods is the value assigned pixel

(2,3) for the likelihood £nL(x) it is assigned -(A/2o) 2 
- (A/2(y)(g 2 3/o)'

while for n.(x') it is assigned -(A/2)2 + (A/2o)(g 23/u). Therefore

P(deciding x'Ix correct) = P(ZnL(x')-nL(x) > OIx correct)

=P((A/o
2 )g 2 3 > 0ix correct)

= P(H > Ofx correct)
2g22

Conditioned on x being correct H is N(-(l/2)(A/o) ,(A/) 2)

and

P(H>OIx correct) = f (2n)J1exp(-s 2 /2)ds (19)
1l(A2 a

Since the lower limit of the integral (19) is 1.6 times that of (18) the

latter probability is higher. As a numerical example, consider the case of a

signal to noise ratio, (A/a), of one. Then the lower integral limits in (18)

and (19) are .5 and .625, and the corresponding error probabilities are .265

* and .309 respectively. This gives an indication that this algorithm is less

likely to explore extraneous paths than Martelli's, or equivalently, it would

return substantially the same performance in the presence or larger noise

variance.

Next consider the eight pairs of paths shown in Figure 8. In each

case path 1 is straight and path 2 fs a curvy perturbation obtained by

moving four pixels from inside object Lo inside background or vice-versa.

If paths 1 and 2 have Martelli costs c I and c 2 and log likelihoods nL I
] I . ... . .. . . ... .... .. 1
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and ZnL 2 as defined by our algorithm, then the algorithms choose paths I

or 2 in accordance with

path 2
G = (c1-c2) 0 (20a)

path 1

path 2
H (9nL2- nL 1 )  > 0 (20b)

path 1

G and H will each have two components a boundary statistic denoted as

B,either curvature cost or transition probability, and a data statistic

denoted as A, either gradient or template. Conditioned on one path being

correct (lying on boundary) and the other being incorrect, then only A is

a random variable and the total statistic (A+B) is normally distributed

with mean and variance which are a function of which path is assumed

correct. Hence the probability of an error, that is each algorithm

finding the incorrect path of least cost or more likely, is of the form

P = P(A+B > 0paths 1 and 2)p<

f (2)- exp(-s 2/2)ds (21)
p

where

+(B+M4ean(A)) (22)
Standard deviation(A)

Assuming B=0 and a signal to noise ratio of one, Table 1 gives p and P

for each of the eight cases both when the straight path I is assumed

correct and also when the curvy path 2 is assumed correct. When both

possibilities are equally likely then the average probability of an

error, Pa' is just the average of P for the two cases. This is also
p

calculated in Table 1. If an algorithm were employed which chose paths

according to the optimal likelihood function (5) then the only pixels
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entering the error statistic would be the four lying between the two paths.

Hence one can easily calculate p and P for this algorithm and this dataI p

is given in Table 1 as well. A common property of our algorithm and the

optimal is the symmetry of the error statistic. One obtains the same

error probability regardless of whether path 1 or path 2 is assumed

correct. This is not true for the Martelli algorithm. In particular

the Martelli algorithm does considerably better when the correct path is

4 straight. In fact in this case it out performs the optimal. This is

because it has been designed to favor straight paths, while neither the

data statistic for our algorithm nor the optimal, favors any type of

curvature. On the other hand, because of the assymetry of the Martelli

statistic our algorithm gives considerably better performance if the

correct path is curvy. Although, as expected, it does not perform as

well as the optimal. A more detailed comparison of our algorithm and

the optimal is given in the next subsection. Finally in comparing overall

performance, observe that for five of the cases our algorithm gives sig-

nificantly lower average error probability while Martelli's algorithm

does significantly better in only two of the cases.

Justification for the Suboptimal Boundary Estimator

In Section If we derived a likelihood function (5) for optimal MAI'

estimation of the state sequence fx or equivalently the boundary edgeIJ

sequence {t 1. A key feature of (5) is the way it incorporates pictureI!
function data. First, it makes use of all the picture function data.

Second, as seen in (4), the data enters quadratically. However, after

simplification only the linear terms effect the maximization. To develop

a computationally feasible algorithm picture data had to be used in a

suboptimal manner. In this subsection we investigate analytically, per-

formance effects caused by our suhoptimal data usage. In particular we
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show that our boundary estimator performs substantially the same as the

optimal. We also give justification for using picture data linearly in

our suboptimal algorithm rather than quadratically.

As done in the previous subsection, we consider two alternative paths.

Path 1 is assumed to lie on the true boundary and we calculate the proba-

bility of an error, that is that path 2 appears more likely. Rather than

consider specific paths such as in Figure 8, we will consider two more

general cases. As shown in Figure 4a, in case 1 we will assume that the

two paths are far enough apart so that the two data swaths used by the sub-

optimal algorithm do not intersect. In case 2, Figure 4b, we assume that

the paths are close enough together so that the swath sections to the

left of path 2 and to the right of path I overlap.

For each case we consider three algorithms. The optimal algorithm

based on (5) makes use of all the data in the picture region containing

the two paths. However, a more practical approach, although less optimal,

is to incorporate only the data in the two swaths, but use all of it in

calculating the likelihood for each path. We compare this near optimal

algorithm with our algorithm and it will be designated Algorithm 1.

The second algorithm considered is the final version of our suboptimal

algorithm where picture data enters the likelihood function (6) linearly

according to (8). With this algorithm the likelihood of a specific path

contains only data from the swath about that path. As mentioned in

Section III, since picture data enters equation (4) quadratically, in

our early experimental work we chose to incorporate picture data into (6)

quadratically according to (7). In order to demonstrate the improved

performance obtained by using the linear rather than the quadratic terms,

Algorithm 3 is also analyzed. It is the same as Algorithm 2 but incor-

porates picture data using (7) rather than (8).

A_
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Before proceeding some additional notation is needed. Consider

Figure 4 and let S9m Z,(1,2), mE(L,R) denote the pixel subset con-

tained on side m of swath Z (swath containing path Z). Next let S9

denote the entire set of pixels in swath Z so that S. = S L U S Define

the number of pixels in set S m or S as N or Nz respectively. Finally

for the overlapping case of Figure 4b, let SI = SlR S2L and N be the

subset and number of pixels in the intersection of S and S
1R 2L*

Case 1 - Algorithm 1: In this case we assume S and S to be dis-
1 2

joint, and path 1 lies on the true boundary. Algorithm 1 uses likelihood

(5) but only for pixel data in S and S Defining L and L2 as the like-

lihoods of paths 1 and 2 respectively, then an error is made if Q > 0

where

QI1 = 2nL2 - P.nL = X Q.n PB(x ixi_l) - Z 2n PB(X Xi1)
path 2 path 1

- E (A/2a)(gi./o) - X. (A/2u)(g ij/a) (23)

(i'j)CS2L (i'j)ESlR

As in the previous subsection Q = A + B where B is the boundary

statistic consisting of the transition probability terms in (23), and

A11 the data statistic consisting of the picture function terms. Con-

ditioned on two specific paths only A11 is a random variable. It is

Gaussian with distribution

A2 2A11 ~ N(-2 (NIR+N2L)(A/
2a) , 4 (NIR+N2L)(A/

2o) (24)

Hence, conditioned on paths 1 and 2 the probability of error

P1 ,P(Q11 > Olpaths 1 and 2)

= r - 2
J r (2ir) exp(-s /2)ds (25)
Pl

where

-B-Mean(A11 )

I'1l Standard deviation(All) (26)
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For B=O and NR =N 2L=N we obtain

1
.!.I i (A)

p11 = (N) c) (27)

Numerical values for p11 and P when the signal to noise ratio
11 11

(A/) is one and two, and when the number of pixels, N, in swaths S2L

and S1R is 4 and 8, are given in Table 2.

Case 1 - Algorithm 2: For our suboptimal algorithm the likelihood

associated with path I only contains picture data in swath SI while that

associated with path 2 only contains data from swath 2. Hence using

equations (6) and (8), if L1 and L2 are the likelihoods associated with

paths 1 and 2 respectively then an error is made if Q12 > 0 where

!" QI2 = nL 2 Xn l- =  UI nP(XilXi.) Zn (neB xli
Q 2  1  path 2 B1 - path I Biil

+ Z (A/2a)(gi./j) + T (A/2o) (g ij/a)
(ij) SiL (ij) S 2R

- Z (A/2u) (g ii/0) - I (A/2o) (g ij/0)

(iI j) sR (i,j) S 2L

(N -N 2 ) (A/2a) 2(28)

If Q12 = A12 + B where B is the boundary statistic and A12 is the

data statistic, then

A1 2  N(-2N2L(A/2T)
2 , (N1 + N2) (A/2a) (29)

Again we can calculate an error probability

P12= P(Q 1 2 > 0paths 1 and 2)

fo (27) exp(-s /2)ds (30)

p 1 2

For B=0 and N1R N 1L = N2R = N2L = N we obtain

O12 1 ) )(31)

Numerical values for 012 and P1 2 can be found in Table 2. Observe

that p11 = 42 o12. Thus our suboptimal data usage results in a
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boundary estimator which is quite good. In fact for as few as 8 pixels

in a swath (N=4), and a signal to noise ratio (A/a) = 1, the error proba-

bility is only .150. Also, as is apparent from examination of Table 2,

if we consider longer paths with more pixels in a swath, or pictures

with larger signal to noise ratios, the error probability quickly decreases

to zero.

Case l-Algpr-i-thm 3: If we use an algorithm similar to algorithm

2 but one where data likellhoods are calculated using the quadratic

terms (7) rather than the linear terms (8) we obtain an error statistic

Q1 3  A1 3 + B where

A E -~(g + A) 2 +-

2 2(g13 )  2 (gij -
AI3 (jE~S IL 2a2  (i, j)CS IR 2a

(g +A2 A A2
2gij + 2) - 2 - (gij

(i'j)CS2L  2o -  (i, )tS2R 2(32  -

+ -1 (NI-N 2 ) Zn(21To ) (32)

Although AI3 is not Gaussian if N and N are large then it is

reasonable to approximate it as Gaussian. Since A1 3 has mean and

variance

Se a n (A l 3 = ! (N I N 2)  ( i+ 9,n (2 i 2 ) _ 2N 2 ( !/2 o ) 2
Ma(13) 1 2 -- 22

Var(Al3 ) = +N + 4N(A/2u)2

For B=0 and N as defined above

013 = 2 () 1 (33)13 2 U(1+2(A) 2)"2

A

Numerical values for P1 3 ' and the error probability P13 under the

Gaussian assumption are given in Table 2. Clearly Algorithm 2 outperforms

Algorithm 3 for all finite signal to noise ratios, and significant improve-

ment is obtained for fifgnal to no lse r:t i(o of oni or 1ess.

/ 111ILf
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Case 2 - Algorithm 1: As illustrated in Figure (4b) for this case

we assume paths 1 and 2 are closer together so that S =SIR S 2Lis not

empty. However we do not allow S1 to intersect S2R or S2 to intersect

S The overlap does not influence the performance of Algorithm 1

hence 21 = 01l and the error probability P21 
= P11 "

Case 2 - Algorithm 2: Although for algorithm 2 the error statistic,

Q22' is still given as in Case 1 by equation (28), the overlapping data

in S and S effect the distribution of the corresponding data statistic
1R 2L

A22 The pixels contained in the overlapping set SI enter A22 twice rather

than once causing A 22 to have a larger variance than A1 2. In particular

A22 N(-2N2L(A/2o) 2, (N1 +N2+2NI)(A/2) (34)

This causes a degradation in performance in comparison with both Case 1,

Algorithm 2, and Cases I and 2, Algorithm 1. For example, if we consider

a limiting situation where S = S2L so that NI = N we obtain

1
--- (N) (-) (35),22, 22

.46-

Hence p12 = (4/3) P22, and p11 = P22 = '3 p22' However, as illustrated

in Table 2, performance is still quite good.

Case 2 - Algorithm 3: For Algorithm 3 the data overlap actually

causes an improvement in performance. In this case the non-Gaussian

data statistic A23 has

Mean (A23 ) = !(Ni-N 2 )(l+Vn(21,o
2 )) -2N2L(A/2d)

2  (36)

Var (A23) = (NI+N2-NI) + 4N2L(A/2o) (37)

Making the Gaussian approximation and taking N = N we obtain
I

3 (N) (38)

" IiI L2 3lll iiI- . . 2 n i l - m . . . ' - . .
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Although the overlap causes a degradation in the performance of algorithm 2

and an improvement in that of Algorithm 3, as can be seen from Table 2,

for the case of small signal to noise ratios. Algorithm 2 still outper-

forms Algorithm 3. This is the more important situation since for large

signal to noise ratios all error probabilities are small.

Estimating Projections

We would like to be able to predict algorithm performance when the

object boundary contains artifacts which are somewhat inconsistent with

the boundary generation model. Consider, for example the projection shown

in Figure 8, and assume the notation and terminology of the previous

analyses. If the state transition probabilities PB (-I- ) are small for

paths of high curvature, that is the Markov process boundary model favors

smooth straight paths, then the contribution to the boundary statistic B

for path 1 will be larger than that for path 2. Thus the statistic B

will be positive, and tend to support an erroneous decision in favor of

path 2. The only way that the overall decision statistic, A+B, can support

a correct decision is for A+B<0, or A sufficiently negative. This will be

the case if N and N2 are large enough, that is if there is sufficient

data so that its contribution to the decision statistic outweighs the

boundary model contribution. More specifically we require

-B -Mean (A)p = >> 1(39)
Standard deviation(A)

Using (29) we obtain

2L-B + 2N 2L(0/2(j)

-- > 1 (40)
(N I+N 2) (A/2(j)

If the projection is long relative to the number of edge elements used

in calculating transition probabilities for B, B will remain roughly
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constant as N and N increase. Using (40), and estimating B for a
1 2

specific boundary model allows one to determine roughly the required

swath width for correct estimation. A more accurate determination of

the estimators ability to track around projections requires a more

careful analysis of the sequential behavior of the algorithm. An example

illustrating the results of applying our algorithm to a projection such

as in Figure 9 is given in the following section.

An alternative approach to handling boundaries with unusual artifacts

such as occasional projections or others, is to treat these as pattern

classes to be recognized.



V. Examples

In this section we present some examples of the boundary estimates

computed by our algorithm. The images we consider are shown in Figures

lOa-e. Figures lOa-c are artificially generated noisy images, while

Figure lOd is a FLIR image of a tank and Figure 10e is a satellite image

of a cloud.

First consider Figure lOa. It shows a perfect ellipse in an additive

Gaussian noise field resulting in a signal to noise ratio A/a = 1. Fig-

ure Ila shows both the actual elliptical boundary and the estimated

boundary when transition probabilities were calculated using the local

curvature algorithm. The parameters a and b in equation (10) were 2.0

and 5.0 respectively. For the estimate shown in Figure lib the transi-

tion probabilities were calculated by use of the Kalman filtering algorithm

where

[ 1.0 0.0201
;- iA =

; 0.058 i .0

-0.6688

= [1.8561

K = [0.568 0.0138]

-0.0365 0.568 3

As expected, since the Kalman filter approach makes use of more "

information, it generates better estimates. Computationally, it is also

more efficient in terms of the number of nodes placed on the graph. The

elliptical boundary contains roughly 180 edge elements. Hence, if an

algorithm did not expand any extraneous graph nodes it would expand

slightly fewer than 180 nodes. The curvature algorithm expanded 307

nodes while th, Kalman fiter alg orithm expanded onl v 200 nndes.
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Next consider Figure lOb. It shows a distorted ellipse whose

boundary was generated by use of the dynamical model given in (11) and

(12). It also is imbedded in an additive Gaussian noise such that

A/a = 1. Figure 12a shows the true and estimated boundary using the Kalman

- filter algorithm, and the state space model parameters which generated

the true boundary. For this model

[ .A = 0.020i_0 .058 1.0 __

b= 0.6688]

• .856

= [0.9285 0.01941

L-O .0538 0.92851

These matrices were generated by choosing N=180, M=3N, 0=900,

p-3/5, cT = [32,321, a =1 and a =l/vi2. To demonstrate the robustnessu w

of the algorithm to poorly estimated model parameters, we perturbed

these parameters by roughly 20%. Specifically we chose N=160, 0=700,

o=3/4, cT = [26,261, a =1, and a =I/Y2. This results in!U W

A = L 0  0.031i
100489 1.0 _

12714]

b =

r0.9285 0.0294]

L-0.0454 0.9285j

Figure 12b shows the estimated and true boundaries in this case. While

the resulting performance in the two cases is very similar, it appears

that accuracy of model parameter estimation can substantially influence

computation time. With the correct model parameters the algorithm
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expanded only 190 nodes while with the incorrect parameters the algorithm

expanded 438 nodes.

Figure 10c shows a circular object with a rectangular projection of

the type discussed in Section III. The signal to noise ratio in this

picture is also one. Figure 13 shows the true and estimated boundary for

this picture using the curvature algorithm for calculating transition

probabilities. In this case, the data swaths used in the likelihood

calculations were large enough to assure proper performance.

Finally, Figures 14 and 15 show the results of applying our algorithm

to real image data. Figure 14 shows the estimated boundary for the FLIR

image of the tank shown in Figure lOd while Figure 15 shows the estimated

boundary for the satellite cloud image of Figure l0e.



VI. Comments and Conclusions

By viewing boundary estimation in terms of MAP estimation of a Markov

process state sequence, in Section II we presented a maximum likelihood

framework to serve as a basis for the design and analysis of sequential

boundary estimation algorithms. While optimal estimation required use of

all the picture data, computational constraints limited the amount of

data which could be practically employed by an algorithm. As a result,

the particular suboptimal algorithm presented in Section III only incorpor-

ated picture data in swaths about hypothesized boundary edge sequences.

The results of Section IV demonstrated the power of the likelihood formula-

tion in doing formal algorithm analysis for the purposes of comparing

different algorithms and improving performance of a specific algorithms.

It should be pointed out that the particular algorithm presented in

Section III is but one of many possible suboptimal algorithms which are

consistent with the general maximum likelihood formulation, and there is

still potential for developing algoirthms with both improved performance

and reduced computational complexity. Design of such algorithms involves

two important steps. One must choose an appropriate Markovian boundary

generation model, and one must decide on how to incorporate picture data

into the likelihood computations. With this in mind we make some final

comments on these subjects.

Boundary Model Design

In choosing a boundary model one must decide upon the type of zx :i-'op'

information regarding boundary curvature and shape which is available.

This information can be generally classified as local or global in nature.

For example smoothness is a local property of a boundary, while closure

is a global property. Though the two models we've made use of incorporate
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both local and global information, the curvature model emphasizes local

information while the dynamical system model emphasizes global information.

In particular, the curvature model is described in terms of behavior of

short sequences of edge elements. It does not make use of the fact that

the boundaries of interest are closed. On the other hand, although curva-

. I ture information is implicitly incorporated into the parameters of the

dynamic model, this model was explicitly developed to exploit a )ro -i

knowledge that the boundaries of interest were closed.

Picture Data Usage

In view of the optimal formulation one is clearly interested in making

use of as much picture data as possible. However, to take advantage of

the computationally attractive sequential maximization procedures such as

A* or dynamic programming, one must limit the use of picture data. We

chose to consider (4x4) data windows and hence limited our use of picture

data to swaths of roughly 2 pixel width on each side of an hypothesized

boundary. Although as demonstrated in the comparison with the Martelli

* ' algorithm in Section IV, this window is useful in preventing a first

erroneous edge element decision, since different swaths contain different

data, performance is degraded in comparison with optimal data usage. As

a result, a computationally feasible algorithm which makes use of a larger

data window containing a greater number of paths for comparison, could

considerably improve performance. Use of a larger window also appears

important for images containing large numbers of pixels where grey level

changes along boundaries may be more gradual. One approach for sequentially

estimating boundaries through larger window blocks is given in [5]. It

might also be mentioned that a more detailed discussion of the dependence

of boundary error on data usage is given in [1].
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In conclusion, the guiding principle in this work has been to formu-

late an optimal approach to the problem, and then to design a suboptimal

realization whose performance can be fairly well understood and analyzed.
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Case Algorithm N A/a P.. P
Uj ij

1 1.414 .078? 4
2 2.828 .002
1 2.0 .023i8

8 2 4.0 .000

1 1 .159
-,7 4

2 2 .023
2 1 1.414 .078

8 2 2.828 .002

1 .577 .281
4 2 1.632 .052

3 1 .816 .209~8
2 2.309 .011

1 1.414 .078
2 2.828 .002

2 1
1 2.0 .023

8 2 4.0 .000

1 .816 .209

2 1.632 .052

1 1.154 .125
8 2 2.309 .011

1 .632 .266
2 1.705 .045

1 .894 .187
2 2.411 .008

Table 2 - Comparison of Algorithms 1, 2, and 3.
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Figure la. Four directed edge J--
elements defined by an arbitrary j+3
pixel (i,j) and their correspond- -- -
ing direction numbers d.

Figure lb. Example of a closed
directed boundary.
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Figure 2. Relation between boundary edg'e seque1ces
and graph nodes (Markov states).
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Figure 3. Graph structure corresponding to two
alternative object boundaries.



l,2<i -

: / 39

P a th I --

• 
I P a t h 2

S 2R2L
S /

S

iL/ / N \

Background

Swath
Object

Fig. 4a Examples of alternative boundary path segments
with disjoint data swaths.

/ --c1

l R .- >

'-
I S\2L-

1R

Path 2
Path 1

S I\ - ./

s/ / !/
/

Background I - Object

F 4b EI
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